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We consider the effects of critical-layer nonlinearity on spatially growing oblique 
instability waves on nominally two-dimensional shear layers between parallel 
streams. The analysis shows that three-dimensional effects cause nonlinearity to 
occur a t  much smaller amplitudes than it does in two-dimensional flows. The 
nonlinear instability wave amplitude is determined by an integro-differential 
equation with cubic-type nonlinearity. The numerical solutions to this equation are 
worked out and discussed in some detail. We show that they always end in a 
singularity at a finite downstream distance. 

1. Introduction 
External excitation of (convectively unstable) free shear layers between parallel 

streams produces spatially growing instability waves that are initially governed by 
linear dynamics for sufficiently small excitation amplitudes. While the instability 
amplitude continues to increase with increasing downstream distance, its local 
growth rate must ultimately decrease due to viscous spreading of the mean shear 
layer. Nonlinear effects can then become important in a ‘critical layer’ a t  the 
transverse position where the mean flow and instability wave phase velocities are 
equal (once the instability wave amplitude becomes sufficiently large and its growth 
rate becomes sufficiently small). The unsteady critical-layer flow is then governed by 
a nonlinear vorticity equation, while the motion outside the critical layer remains 
essentially linear. The external instability wave growth rate is, however, completely 
controlled by the nonlinear dynamics of the critical layer. 

There are now too many nonlinear critical layer analyses in the literature for us to 
summarize here. We refer the reader to the excellent review by Maslowe (1986) for 
nonlinear critical layers in general and to the one by Stewartson (1981) for Rossby- 
wave critical layers in particular. Here it is only appropriate to mention the analyses 
specifically concerned with spatially evolving flows. Huerre (1980, 1987) considers 
the two-dimensional incompressible shear layer in the viscous critical-layer regime 
where the nonlinear effects enter only at higher order. Huerre & Scott (1980) and 
Robinson (1974) consider the strongly nonlinear regime, but their choice of scaling 
precludes the possibility of matching their results onto the linear upstream solution. 

Goldstein & Leib (1988) and Goldstein & Hultgren (1988) overcame this difficulty, 
but again consider only the incompressible case. They consider only a two- 
dimensional flow, since the two-dimensional instability wave is the most rapidly 
growing linear mode in that case. However, oblique modes exhibit the most rapid 
growth in sufficiently high-Mach-number supersonic shear layers (Gropengeisser 
1969; Jackson & Grosch 1988). Goldstein & Leib (1989) consider the case where the 
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unsteady flow evolves from a single oblique mode, in which case it is appropriate to 
suppose that the initial instability wave grows in its propagation direction. The 
cross-flow velocity effects can then be eliminated from the analysis by use of an 
appropriate ' Squire transform ', but the critical-layer nonlinearity still behaves quite 
differently from the incompressible case - primarily because the temperature 
fluctuations have algebraic singularities in the critical layer and therefore become 
very large relative to the velocity components, causing the critical-layer 
nonlinearity to occur at a much smaller amplitude vis-&via the two-dimensional 
isothermal case. The resulting critical-layer nonlinearity is then weak in the sense 
that the flow is governed by linear dynamics to lowest order of approximation, with 
nonlinearity entering only through the higher-order (inhomogeneous) terms. The 
instability wave growth rate is still controlled by the nonlinear terms, but can now 
be calculated from an amplitude equation similar to the one found by Hickernell 
(1984) for the Rossby-wave singular modes. 

Here, we consider the case where the initial instability wave grows in the 
streamwise direction. It is then appropriate to suppose that there are two oblique 
modes with the same frequency and streamwise wavenumber but with equal and 
opposite (real) spanwise wavenumbers in order to represent a fixed spanwise 
structure. (In real flows the allowable spanwise wavenumbers might be selected by 
the sidewall positions.) The cross-flow velocity fluctuations, which have the same 
algebraic singularity in the critical layer as the temperature fluctuations, now 
become coupled to the velocity fluctuations in the plane of the wave, causing the 
critical-layer nonlinearity to again become important at smaller amplitudes than in 
the two-dimensional incompressible case. In fact, the nonlinear oblique-mode 
interaction causes the critical-layer nonlinearity to occur at even smaller amplitudes 
than in the single-mode compressible case (Goldstein & Leib 1989). Critical-layer 
nonlinearity now becomes important when the instability wave growth rate is O ( d )  
rather than O ( d ) ,  as in the Goldstein & Leib (1989) case, where E denotes the 
characteristic instability wave amplitude a t  the start of the nonlinear region. 

The instability amplitude outside the critical layer can again be determined from 
an amplitude equation because the critical-layer nonlinearity is still weak. The 
equation is similar to that of Goldstein & Leib (1989) in that it is an 
integrodifferential equation with cubic nonlinearity, but the structure of the 
nonlinear kernel function is now somewhat different from theirs. While the 
phenomenon is of most importance in supersonic shear layers, we restrict the analysis 
to the incompressible case because the nonlinear critical-layer dynamics are 
unaffected by compressibility effects, and their inclusion would greatly complicate 
the analysis. Moreover, the final amplitude equation (3.69), which is the principal 
result of this paper, remains valid for the compressible case. This equation has to be 
solved numerically, which is accomplished by using a fourth-order predictor- 
corrector scheme to integrate in the downstream direction, starting from the 
upstream linear state which is prescribed far upstream in the flow (relative to the 
streamwise lengthscale of the nonlinear region). 

The calculated instability wave amplitudes initially follow the prescribed linear 
growth, but soon begin to either saturate or increase their rate of growth when the 
nonlinear effects come into play. Cumulative history effects eventually counteract 
the former trend, causing a rapid increase in amplitude which ends in a singularity 
a t  a finite downstream distance. The local asymptotic solution of the amplitude 
equation is derived. It shows that the flow will become fully nonlinear everywhere in 
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the shear layer and that the motion will then be governed by the full three- 
dimensional Euler’s equations in the next stage of evolution downstream of the 
weakly nonlinear region. 

The overall plan of the paper is as follows. The problem is formulated in $2, where 
we show how the nonlinear critical layer gradually evolves from the strictly linear 
finite growth rate solution. The flow outside the critical layer is a linear, unsteady 
three-dimensional perturbation about the two-dimensional mean shear-layer flow, 
which can be treated as locally parallel on the streamwise lengthscale over which the 
nonlinear effects take place. The latter occur entirely within the critical layer to the 
order of approximation of the analysis and determine the unknown amplitude 
function in the external solution. The transverse velocity fluctuation is taken as the 
basic variable for the external flow, and the (linear) equation for this quantity is 
expressed in terms of the ‘Squire coordinates’ associated with either of the two 
oblique modes. 

We introduce a ‘slowly varying ’ amplitude function, which depends on the 
streamwise coordinate through an appropriately scaled variable and is ultimately 
determined by the nonlinear flow in the critical layer, which we analyse in $3. 
Matching with the linear external instability waves leads to the nonlinear 
integro-differential equation that determines the amplitude of those waves. The 
numerical and asymptotic solutions to this equation are discussed in $5.  

2. Formulation and solution outside the critical layer 
We are concerned with a nearly inviscid incompressible shear flow between two 

parallel streams with nominally uniform velocities U1) > U@).  The upstream flow 
consists of a steady two-dimensional shear layer and a pair of oblique (i.e. three- 
dimensional) spatially growing (i.e. time harmonic) instability waves with the same 
frequency and streamwise wavenumbers but with equal and opposite (real) spanwise 
wavenumbers. The streamwise, transverse, and spanwise coordinates (z, y and z, 
respectively), the time t and all velocities are normalized by So,S,,/d, and A ,  
respectively, where 8, is half the mean shear-layer momentum thickness and 

) (2.1 ) 

is a measure of the velocity difference across the shear layer. When nonlinear effects 
do not first intervene, the gradual viscous spreading of the mean shear layer causes 
the common spatial growth rate of the two linear instability waves to gradually 
decrease until they approach their common neutral stability point, whose Strouhal 
number and streamwise and (real) spanwise wavenumbers we denote by So, a, and 
f /I, respectively. 

As already indicated, nonlinear effects first become important a t  the streamwise 
position (upstream of the linear neutral stability point) where the local Strouhal 
number S (frequency normalized by d/d0) is 

= I( U‘1’ - U‘2’ 
2 

s = so + &S1. (2.2) 

Here S,  < 0 is assumed to be an O(1)-constant, and e denotes the characteristic 
amplitude of the instability wave in this region. The instability wave growth rate, 
which is also O(d),  will then be determined by the nonlinear critical-layer effects. 
Finally, we require that the origin of the spatial coordinates x, y, z be located within 
this nonlinear region. 
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The transverse velocity fluctuations of the two upstream linear instability waves 
will then be of the form 

- ,qeipz + e-ipz) R~ iat$il)(y) ei(at-f:+S,t)-tS, U ; K ~  1 

where t denotes the time, 
ol= (a"+*);, 12.3) 

+ p  denote the (real) spanwise wavenumbers of each of the individual instability 

P 
waves and k(3, where 

8 = tan-'-, 

denotes the direction of propagation (relative to the mean flow direction) of these 
waves at their common neutral state. 

(2.4) a 

6 = x-u,t (2.5) 

is a streamwise coordinate in a reference frame moving downstream with the neutral 
phase velocity 

uc=s" a '  (2.6) 

x1 = €$X (2.7) 

is a scaled streamwise coordinate (in the fixed reference frame) and, 

is, Uc ;K 

is a scaled complex wavenumber whose imaginary part is minus the common growth 
rate of the linear near neutral instability waves. @i')(y) is an appropriate solution of 
Rayleigh's equation, which can be taken as the neutral solution to the required order 
of approximation. The complex constant at is a measure of the complex (scaled) 
amplitude of the two waves. 

The normalized pressure is denoted by p and the normalized velocity components 
in the moving { E ,  y, z }  coordinate system by {u, v, w}. We expect the solution outside 
the critical layer to expand like 

u = U(?J)+€U,+€4LZ+ ..., (2.8) 

(2.9) 

(2.10) 

w = €vl+€~wz+ ... , 
w = €W'+€$W,+ ... , 
p = €pl+€$pz+ ..., (2.11) 

where U(y)+U, is the base-flow velocity, and the form of the upstream linear 
solution suggests that v1 can be written as 

w1 = -Z(e'pz+e-'pz) Rei@:')(y)At(xl)eiu~, (2.12) 

where 4 = E-S,dt/a, (2.13) 

and At is a function of the slow streamwise variable q, which will ultimately be 
determined by the nonlinear flow in the critical layer, but matching with the 
upstream linear instability waves requires that i t  satisfy the upstream boundary 

as x,+-co. (2.14) 
condition 

The O(d)  terms (in (2.8)-(2.11)) are induced by nonlinear effects within the critical 
layer and by derivatives of the O ( E )  terms with respect to xl. They are, therefore, a t  

At + at e-S1 U;FX2, /2 
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least in part, associated with linear growth rate effects. In fact, the entire solution 
(2.9) satisfies linear dynamics to the indicated order and is therefore determined by 
Rayleigh's equation 

where the primes denote differentiation with respect to y and 

(2.15) 

(2.16) 

is the Laplacian in the moving reference frame. It follows that v2 is a function of the 
form v2(c, xl, y, z )  and therefore satisfies 

where V2 now denotes the Laplacian with respect to 5, y, and z, and the partial 
derivatives with respect to 5 are a t  constant x1 and vice versa. It follows from 
continuity that 

(2.18) 

@il) must, of course, satisfy the reduced Rayleigh's equation 

where (2.20) 

denotes the reduced Rayleigh's operator, and u1 and w1 are then given by 

u1 = (eiflZ+e-i@) CoseRe At(x,)eiaC+ReFYA ( y , ~ ~ ) e ~ ~ f l ~ ,  

(2.21) 

(2.22) and 

where the c-independent term in (2.21), which is governed by linear dynamics in the 
main shear layer, is induced by nonlinear effects in the critical layer. 

Then, since u2,v2, and 20, have the same c-periodicity as vl, they must be 
expressible in the form 

(2.23) 

w1 = - 2 sin 0 sin ,8z Re i 

m 

u2 = Re C. Fim)(y, z, xl) eimaC, 
m-0 

m 

v2 = - d Re i Z &im)(y, z, xl) eimac, 
m-0 

m 

w, = Re X H!jm)(y, z,  xl) eimaC. 
m-0 

Substituting (2.12) and (2.24) into (2.17) we find that 

= 2 cospz@p(y, q), 

(2.24) 

(2.25) 

(2.26) 
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where @r) satisfies 
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It now follows from (2.23)-(2.25) and (2.18) that 

Pi1) = (sec e p  + sin e tan (e‘@ + e-’@), (2.28) 

and Hi1) = - sin @HC)(eiD - e-iPz 1, (2.29) 

where Fil) is given by 

(2.30) 

and H ,  can be defined similarly, but will not be needed in the following analysis. 
Equations (2.19) and (2.27) must, in general, be solved numerically. Fortunately, 

we need only know the local behaviour of their solutions a t  the critical level where 
V(y) = 0. This will occur a t  the inflection point U”(y,) = 0, or 

u; = 0 (2.31) 

(where the subscript c is used to denote quantities a t  the critical level) provided we 
assume, as we now do, that U(y) has only a single inflection point. 

The critical level, which we can always suppose to lie a t  y = 0, is then a regular 
point for the operator (2.20), and (2.19) will, therefore, possess the two linearly 
independent solutions 

&(I) = 1 + -  2 !  1 ( a2+- 2) y2+ ... 

and 

as y+O. 
Then we can put 

@?) = &(I) + 6 1 &W, 

(2.32) 

(2.33) 

(2.34) 

where b, is a constant which must, in general, be determined along with d by solving 
(2.19) numerically subject to the proper boundary conditions at  y = & a. Then (2.21) 
and (2.22) imply that 

u1 = cos B(ei@ + e-’f12) { - ta: ’+ bl( 1 + tan2 8) 

U[ 
VE 

c%2(1++tan28)+-(1+~tan28 ReAtei”c+ReP!~(0,xl)e2i~Z+ ... , (2.35) 

w1 = -2sinOsin@z (2.37) 

as y + 0, where we have anticipated the fact that the critical-layer solution produces 
an O ( E )  mean flow change across the critical layer but no change in the second 
harmonic of the streamwise velocity fluctuation. 
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It follows from (2.27), (2.32), and (2.33) that there exist two continuous functions, 
say @p,l  and @ p , 2 ,  which satisfy 

(2.38) 

and L(l)@p,2 = @p (2.39) 

but are, in general, unbounded a t  y = k 03. Q P ,  will behave like 

u" 
u2 

L(l)@p,l = -@?I 

El + E 2 , L  y In IyI + Ez y + . .. , 
as y+O and @ p , 2  will be regular there. The relevant solution to 2.27) must then be 
of the form 

where b i . , c i n  are real constants (even on the slow scale xl), which must, in general, 
be determined numerically. 

It now follows from (2.30) that 

--(UcALl-iLYIAt i b;l+... as y++O, (2.41) 
a 

where the specific values of el and e2 are immaterial, and we do not need the 
corresponding expressions for H p )  in the following analysis. 

3. The critical layer 
Equations (2.35) and (2.37) cleary show that the outer expansion (2.8)-(2.11) 

becomes singular a t  the critical level. The linear small growth rate critical-layer 
thickness is of the order of the linear growth rate which is O(d)  in the present case. 
The appropriate scaled transverse coordinate in this region is therefore 

Introducing this along with (2.12), (2.23) to (2.25), (2.40), (2.41), and (2.32)-(2.37) into 
(2.8)-(2.11) and re-expanding the result suggests that the critical-layer solution 
should expand like 

u = €iU:!Y+€zi,+€Q,+€:Q2+...,  (3.2) 

w = €bo+€2i) l+€:2i)z+. . . ,  (3-4) 

p = €$o+€:g1+€'2+..., (3.5) 

?J = - &(eiflz + e-'flz) Re iAteiac+ eB1 + efB2 + . . . , (3.3) 

where we suppose that the Pine terms have been incorporated in the Go, Gl, etc., 

$o = Uc cos 6(eiflz + e-'flZ) Re At eiac, (3-6) 
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and, for convenience, we have put 
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1 
@= €-QJ. (3.7) 

The Q,, 8,, G,, etc. are functions of 5, Y ,  z ,  and x,, only and are determined by the 
inviscid momentum and continuity equations. It follows from (2.23), (2.25), (2.28), 
and (2.41) that matching with the external solution requires that 

1 
-- (U,Ael - is, At) (bi ,  - 6 ,  (3.8) 

(3.9) 

a 
where we have put 

A t i i  = lim [%:(6, Y ,  X ,  x,) -a:(<, - Y ,  z, xl)] 
Y+a,  

and ti; = Qncosc9fG,sin8 for n = 0 , 1 , 2  ,.... (3.10) 

The requirement (3.8) merely states that the change in propagation-direction 
velocity across the critical layer, as calculated from within, is equal to the change in 
that velocity as calculated from the linear external solution. 

It turns out to be convenient to work in terms of the spanwise vorticity 

which expands like 
(3.11) 

(3.12) 

where w2 = - Q 2 y + ~ a ( e ' ~ z + e - i ~ z )  ReAteiuc. (3.13) 

Then w and u = {u, v, w} (3.14) 

satisfy 

(3.15) 

a "1 { 5 [( 2 ) : C  ay ax, aZ 
€3 

a l  
U-€3- -+@-+€qu+Uc)-+w- = -  p +€iP 

and u ,+~y+w,+€~ux l  = 0. (3.17) 

Substituting the expansions (3.2)-(3.6) and (3.12) into (3.15) and (3.16), we find that 

9, Go = - Uc ti sin 8 cos 8 Re i( ei@ - e-iflz) At eiuc, (3.18) 

9, dl = d(eipz + e-'flz) (Re iA eiuc) GOY - (Zi, %+ Go i) Go - & YGox, -&, (3.19) 

(3.20) 

a 

9o 6, = Uc d sin2 c9( eipz + e-'pZ) Re iA ei@, 

9,QlY = d(e'flZ+e-'@) (ReiAteiu~)Qoyy+ ( 'Lio2iroz-Zioz2iro)Y+ K(2irlz- YQoxly) ,  
(3.21) 
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U: 

v:: Yo 8, = E (eiBZ + e-iBz) (Re iAt eiac)(tz:yy - cos SU: Y )  -- (eiPz + ediBz) 

x Re(UcA~l-iSlAt)eiag+(ti;ziro,-Zioti&.-ziroa~z-~lcos8Zio, 

-~,sin8ziroc-6,tz~y)y+ ~c(~~~8zir2,-sin8zir2g-sin8zirlxl- Ytz~x ly ) - (Z io t z~z l ) y ,  

(3.22) 

and 61, = - ~ l g - ~ l z - ~ o x , ,  (3.23) 

where we have put 

and 
u: 
K 

8, = -w ,~os8+s inB(z i r ,~+2~ /3s in~zRe iA~e~~~)  --(ei~z+e-i~z)ReAteiac, (3.24) 

and matching with the outer solution shows that g2 and tilu -4U: cos 8y2 go to zero 
as Y++oo. 

It is now convenient to introduce the following normalized variables : 

ZZ ucxl-xo,  (3.25) 

(3.26) 

X = aC-X,,, (3.27) 

and A = 4Ata2eiXo/(Sl Uc)2Uc, (3.28) 

where xo and X, are real constants. 
Then (3.18) and (3.20) can be integrated immediately to obtain 

S 
a 

(3.29) 

(3.30) 

uo * = - U, V:, sin 8 tan 8 cos /3z Re i Wio) eiX, 

w0=-- uc " sin 8 sin Bz Re Wio) eix , 
01 

where we have put 

wio) = J1 e-iv(P-*)A (-)d 2. (3.31) 
-m 

It is worth noticing that 
erz wp -+ -_ 

7-1K 

when A + erx 

so that (3.29) approaches the linear critical-layer solution (given by the generalization 
of equation (4.34) in Goldstein & Leib 1988) when At approaches the linear upstream 
condition (2.14). 

Equations (3.19) and (3.21) clearly possess solutions of the form 

2 

Zi,, = $U:P -+sin euc X Qg,)m(q, Z) ei(nx+mflz), (3.32) 
n,m--2 

2 1 
and zirl = -El Uc Uc sin 8 2 Wg,)m(7, Z) ei(nx+m@z), (3.33) 

4a n,  m--2 
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where the first term in (3.32) was inserted to ensure that QF,),,, - to  as 9 +* co for all 
n, m. 

Substituting (3.32) and (3.33) along with (3.29) and (3.30) into (3.19) and (3.21) 
shows that 

(3.34) Lo WhtL = i s e c 8 ( 2 ~ i n ~ 8 I W ~ ) 1 ~ - 1 r n A * W ( ~ ) )  111 ’ 

L, wit\ = 0, (3.35) 

L, Qg\ = tan 8 sec 0 ( A  Wiii - 4i sin2 OWp)W\;)), (3.36) 

where the asterisk denotes the complex conjugate, and we have put 

(3.37) 
a 

L, =-+in9 for n = 0 , 1 , 2  ,..., 
az 

and in writing down (3.36) we have anticipated the fact that the relevant solution to 
(3.35) is the trivial solution wit’o = 0. (3.38) 

Inserting (3.31) into (3.34) and (3.36) and integrating yield 

W g i  = i sec 8 Re A *(2)  e-”@[I1(2) + 4 sin2 8(z- 2) 10(2)] d2 (3.39) 

and Q!$ = - tan 3 sec 8 e-2i@ [ 1, A (2)  e’v512(2) d2 + 2 sin2 3I;(z) 

where we have put 

I,(x) = eivz(x-2)nA(2)d2 for n = 0 , 1 , 2 ,  ... . (3.41) 
J -m 

Inserting (3.39) along with (3.29)-(3.33) into (3.21) and integrating we obtain 

Qi:L = tan 8 sec 8 Re A *(2)  e-’V5[I2(2) - 2 ( ~ -  2) 11(2) - 4(2- 2)2 sin2 610(2)] d2. 

(3.42) 
Sm 

Since zi,, and are real we must set 

and 

(3.43) 

(3.44) 

(3.45) 

(3.46) 

It is easy to show that 

QC\ cos 8 + W~~)Os sin 8 = tan 8 Re A*(2) e-’@I2(d) d2, (3.47) 

i 
Qit\ = &S1 Vc sin 8Wi:i, (3.48) 

2 Ya 
W$~\sin8--(Q~’,cos8+ W:\,sinO) 

81 uc 
where 6 is a constant whose specific value will not affect our analysis, The remaining 
Q and W can be similarly determined, but are not used in the following analysis. 



Nonlinear evolution of oblique waves on shear layers 107 

It now follows from (3.32) and (3.33) that (3.22) possesses a solution of the form 

& = -;sin ,gU; &@,) n m  (7, z) e'(nx+mBZ), (3.50) 

where &(2) n,  m + O  as q-tkco. (3.51) 

Substituting this along with (3.32), (3.33), (3.48), (3.38), and (3.43)-(3.46) into (3.22) 
and (3.23) yields 

3 

n, m--3 

= ai{A[&~)2+&~)O+tane(W~~),+W~)O),l1 

+2a2sine '"' ( x ) ( $ U c q A , + i A ) ,  ~2 (3.52) 

QC:, 
V1) 0.21 = tan ewg,  

p l )  - &(1) 

U(1' = 
0 , 2 1  where 

2,017 - 2.0' and 

Inserting (3.39) and (3.42), we find that 

(3.53) 

(3.54) 

(3.55) 

a 
a7 

Ro, E 2 sin2 8 - ( W0) 1 U(') 0 . 2  - W(O) 1, V1) 0 , 2  ) = sin 8 tan2 8( Wio) J,, + 2 W$\) Jztz - I+'$\\ Jizz,), 

(3.56) 
where the J, depend on both z and 7 and are defined by 

J,, = iiReSfmA*(f) (Z-f)3 (3.57) 

where J, = i(J, - J4), (3.58) 

A*(Z) (3- Z)3 e-i@Io(Z) A(Z) ( ~ - 2 ) ~  eiv"l,*(f) df, 

and (3.59) 

J, = -2Re A*(.") (3-2)  [$sin28(z-P)210(Z)+ (z-Z)Il(Z)-12(P)]e-i@df. (3.60) 

Then, upon integrating by parts and inserting (3.31), we obtain 

sf, 
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where 2.01 Q2.0. 

Inserting this along with (3.31) into 
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U'" = (1) 

J -00 

a 
ar 11 2.0 

R2,0 E 2 sin2 8- W(O)*V(l) where 

and integrating by parts now shows that 

(3.63) 

(3.64) 

e-il(f-@R d2 = i sin2 8 ei?zI* 2.0 2 (7 u g m  

- sin 8 tan2 8 e-'@ Lm 1:(2) [A(Z) ei@I1(Z) + 2 sin2 81:(2)] d2. (3.65) 

It is now easy to write down the solution to (3.52) by using (3.61), (3.65), (3.39), (3.42), 
and (3.47). Using the resulting formula for @\ and integrating by parts shows that 

+secO tan 8 K(zI 2, 2,) .4(2) A(2 , )  A ( 2 + 2 , - z )  dB,dP, (3.66) 
J-00 J - m  

where we have put 

K ( z l 2 , 2 , )  = ( ~ - - 2 ) { [ $ ( ~ - 2 )  +sin28(2-2,)] [2(2-z1) - (z-p)] 
- 4 ~ i n ~ 8 [ ( 2 - 2 , ) ~  + (z-2) ( z -2 , ) ] ) ,  

It now follows from (3.8) and (3.24)-(3.28) that  

1 
sin 8 J:OO @), dq = &is: Uc U:: A,(b;, - b ,  2)  - ($Uc u:! A ,  + iA) (b;, - b ,  

Inserting (3.66) into this result yields 

1 
- A ,  = A + y t a n 2 8  rm sf,.(zI 2, Z1) A(2)A(Zl)  A*(2+ 2, - z) df, dZ, 
R 

1 i 
1 = yS2 U - U;(bl,  - b ,  2)  + &iUc U:, where 
K '47C 

(3.67) 

(3.68) 
11 

(3.69) 

(3.70) 

is the reciprocal of the scaled complex wavenumber in the linear amplitude (2.14) and 
we have put 

(3.71) 

Equation (3.69) is the final result. It determines the amplitude of the instability 
wave. It must be solved to the upstream boundary condition 

as z+--o3, (3.72) 

where the real constant $o is an as yet unspecified initial phase factor which was 
introduced via the arbitrary origin shifts zo and X, in (3.25) and (3.27). 

A ~ erZ+i&, 
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4. Asymptotic solution of the amplitude equation 
The principal result of this paper is given by (3.69) together with the upstream 

boundary condition (3.72). The numerical solution to this problem, which is discussed 
in the next section, appears to  develop a singularity at a finite value of 3, say Zs. In 
this section we determine the asymptotic form of the solution as E+z~. To this end 
we substitute 

where Zs and a are real constants and a is a complex constant, into the integral of 
(3.69) and change the integration variables from 2, and 2 to (Z~-~ , ) / (~T~-Z)  and 
(zS - Z)/(zS - Z) to show that 

D ( a ) ,  (4.2) lm LmK(z1 2,z1)A(2)  A(2,) A*@ + 2, - Z) dzl d2 = ( E ~  - q4+iu  

+ (v- 1)2{u-v- sin2 8[u-v +4(u- 1) sin2 8]} 

+ 2(v- 1) (u- w ) ~  sin2 8(1-2 sin2 O ) ]  

and the 6, and bm are complicated functions of the indicated arguments which are 
listed in the Appendix. It is worth noting that 6, is a polynomial in sin8 whereas 
ern is a Fourier series in 8. Carrying out the last integration gives 

00 

n-1 [ n ( n + l )  (n+2)  (n+3) (4+ia), 
C,, ,,(n I v) + C,, 2(n I r) cos 28 + C,, I a) cos 46 

D ( a )  = c ( - 1 ) n  

C,,,(nI ~ ) + C ~ , ~ ( n l  a) c0s28+C2,,(n)a)cos48 
(n + 1) (n + 2) (n + 3) (4 + ia), 

(4.4) (n+2) (n+3) (4+ia), 

where (a), denotes the generalized factorial function ~ ( C L  + n) / r (a ) ,  and the 
coefficients C,,,, . . . , C3, are given in the Appendix. 

A ,  becomes large compared with A as z-+z~, and the left-hand side of (3.69) is 
balanced by the integral term on the right-hand side. Substituting (4.1) into the left- 
hand side shows that the two terms will balance when a satisfies 

+ 

I ’  ~ 3 , o ( n  I a) + c3, 2(n I a) COS 28 + c3, 4(n I a) cos 48 + 

Figures I and 2 show r and lu(yi?)il respectively as functions of Arg (l/yR), which 
are used to evaluate asymptotic curves in figures 6-11 (shown as dotted lines). 
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Parts of the derivations in this section were done with MACSYMA (412.61 for DEC 
VAX 8600 Series) batch programs. Interested readers can contact the second author 
for the programs. 

5. Numerical results and discussion 
The relevant solutions to (3.69) and (3.72) involve the two complex parameters R 

and y ,  the propagation angle 8, and the still unspecified initial phase factor q5,. But 
introducing the rescaled variables A/lyl”l.12 and 14 E-3,’ where 3, and q50 are chosen 
so that 

shows that these solutions can be completely characterized by the two imaginary 
parameters In (i?//Iq) and In (y/ ly l ) ,  or equivalently by the arguments of i? and y .  The 
real part of K is the scaled growth rate of the upstream linear instability wave in the 
vicinity of its neutral stability point, and the imaginary part is the scaled deviation 
of the wavenumber from its neutral value corresponding to the prescribed Strouhal 
number deviation S,. 

Equation (3.69) was solved numerically by using a fourth-order predictor-corrector 
scheme to advance the solution downstream from the prescribed upstream linear 
state (equation (3.72)). The double integrals were computed by using the Trapezoidal 
rule with the upstream ‘tails ’ evaluated analytically from the upstream linear 
solutions. i? and y must, in general, be found numerically by solving the homogeneous 
and inhomogeneous Rayleigh’s equations (2.19) and (2.27). Analytic solutions can be 
obtained only for the ‘tanh’ shear layer (Huerre 1980, 1987) where 

U‘1’ + U‘2’ 
= z =  1, v = - 2  b+ -b- - 0  b+ -b-  = 1. 

1 2 , l  2,1- , 2 . 2  2 , 2  24 ’ 
u, = 

Figure 3-5 are plots of the instability wave growth rate IAlz/lAI for various values 
arg y ,  arg K, and cos 8. We only show results for -$x < argK < 0 because (3.69) 
implies that A(z ,  K*, y*)  = A*@, K, y) .  Notice that the upstream linear growth rate is 
initially reduced when arg ( ~ y )  and 8 are both in the ranges -$x < arg yC < in and 
- 1 . 5 8 3 ~  < 8 < 1 . 5 8 3 ~  (or both outside these ranges). This is because the nonlinear 
term behaves like - yCOIAl2A for small \A[, where C, is a real function of 6. The 
effective growth rate is therefore reduced by the factor 1 -C,JAI2 Re(Ky)/Re K, but 
(except in the special case arg y = arg K = 0) this trend is eventually reversed, and 
the growth rate rapidly increases until the amplitude becomes singular at some finite 
downstream distance for all values of i? and y - suggesting an explosive growth of the 
instability wave there. 

This is shown somewhat better in figures 6-8, which are plots of the real part of 
the scaled instability wave amplitude versus the scaled streamwise coordinate z. Also 
shown in the figures are the results computed from the asymptotic solution (4.1), 
with the singularity location determined from the numerical solution. The latter 
solutions clearly approach the asymptotic result as lzs- 4 becomes small. Since (4.1) 
implies that the asymptotic growth rate IAlt/lAI behaves like (IAl/lal)t in the vicinity 
of the singularity, the initial scaling, i.e. growth rate = O ( E ) ~ ,  is unchanged by the 
singularity. This suggests that the basic asymptotic structure of the critical layer will 
remain intact, and the present solution will not break down until the amplitude IAI 
of the external instability waves becomes order one. The flow will then be fully 
nonlinear and unsteady in the main part of the shear layer, i.e. i t  will be governed 
by the full Euler’s equations there. 
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FIQURE 5. Growth rate Re &/A)  vs. scaled streamwise coordinate z for 0 = in and Arg R = 0. 

This is quite different from the two-dimensional nonlinear critical behaviour in the 
analysis of Goldstein & Leib (1988) where the critical-layer nonlinearity produces a 
redistribution of vorticity that rapidly reduces the instability wave growth rate to 
zero. Three-dimensional effects allow for vortex stretching in the present analysis, 
and this completely counteracts the growth reduction effect to produce the explosive 
instability wave growth. This phemomenon is probably masked a t  subsonic speeds 
by the fact that the linear growth rate of the three-dimensional wave is much smaller 
than that of the two-dimensional wave. The latter wave can alter the critical-layer 
structure of the oblique waves, and the present analysis assumes that the two- 
dimensional wave is completely absent in the nonlinear region. It should be possible 
to eliminate the two-dimensional wave in carefully controlled subsonic experiments, 
but i t  would probably be much easier to observe the phenomenon at supersonic 
speeds where the most rapidly growing linear mode is oblique. While the basic 
amplitude equation (3.69) was derived only for incompressible flow, it applies to the 
compressible case as well, and there is no a priori restriction on the Mach number. 
It is worth noting that the nonlinear critical-layer effects should be much more 
important at higher Mach numbers, because the linear growth rate rapidly decreases 
with increasing Mach number (Jackson & Grosch 1988). 

Figures 6-8 show that the instability wave amplitude undergoes successive 
oscillation upstream of the singularity. Similar behaviour was observed in the two- 
dimensional analysis of Goldstein & Leib (1988) and in the calculations of Benney & 
Maslowe (1975), Huerre (1977), and Miura & Sat0 (1978). The amplitude oscillations 
imply periodic reversal of energy transfer between the fluctuations and the mean 
flow, and possibly between the fluctuations themselves. By considering the Reynolds- 
stress changes that occur with nutating elliptic vortices, Browand & Ho (1983) came 
up with a simple kinematic explanation for this phenomenon. The reader is referred 
to Ho & Huerre (1984, p. 410) for details. 

Viscous effects will undoubtedly alter the critical-layer behaviour described above. 
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FIQURE 6. Amplitude log IAl ws. scaled streamwise coordinate z for Arg R = 0, and ( a )  6 = in, 
( b )  e = in. 

We decided not to include them because they would greatly complicate an already 
complex analysis. They were, however, included in the simpler analysis of Goldstein 
& Leib (1989), and we expect them to act similarly in the present situation. The 
former analysis suggests that viscous effects always delay the explosive growth and 
that they will eliminate it entirely for a certain range of values of y , ~ ,  and 8, 
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Y 

provided an appropriate scaled viscous parameter exceeds a certain finite value. In 
that case, the solution will just go to a finite-amplitude equilibrium state further 
downstream. 

While the present scaling may seem to be rather special, the composite expansion 
technique of Goldstein & Leib (1988) shows that the instability wave adjusts to the 
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( b )  0 = $7. 

proper scaling automatically as it propagates downstream toward the neutral 
stability p0int.t The nonlinear region actually sets its own location in the final 
composite expansion. The only requirement is that the instability wave amplitude 
remains fairly small in the region where the linear growth is fairly small. This 

t As in Goldstein & Leib (1988), the nonlinear solution can be considered to be an inner solution 
in a composite expansion whose outer solution is the linear wave corrected for non-parallel mean 
flow effects. 
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FIGURE 10. Phase Im (A&) us. scaled streamwise coordinate Z for 0 = in and Arga = -in. 

requirement should be very non-restrictive at  supersonic speeds where the linear 
growth rate is always small. However, the experiments show that nonlinearity sets 
in at very small amplitudes, even at subsonic speeds, which suggests that the 
nonlinear effects are localized spatially and therefore confined to the critical layer 
(since this is the region where nonlinearity would first come into play; Goldstein & 
Leib 1988; Goldstein & Hultgren 1988). 
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Equations (2.7), (3.25), and (4.1) show that the explosive growth occurs when 

2-x, = 0(1), 

where 

is the singularity location in the unscaled streamwise coordinates. The streamwise 
extent of the fully nonlinear region is therefore of the same order as the shear-layer 
width. 

It is also worth noting that the asymptotic instability wave amplitude is uniquely 
determined by the asymptotic solution and is therefore independent of the upstream 
conditions. Figures !+11 show the wavelength reduction Im @,/A)  as a function of 
the scaled coordinate 3. The asymptotic results computed from (4.1) are indicated by 
the dashed lines. 

The authors would like to thank Dr Lennart Hultgren for his helpful comments on 
the manuscript and Dr S. J. Leib for helping with the computer program. 
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Appendix 
The detailed expressions for coefficients used in (4.3) and (4.4) are 

- 3 ~ - 1  v(~v-1)  v 2 y v + l  

2(v- 1) (v- 1)2 (v- 1 ) 2  
c, = -- sin2 6 + 4 sin" 6, 

7 ~ - 3  1 7 v 2 - 1 0 ~ + 1  
v-1  

5v2 - 4v + 3 sin4 6, sin2 @ - 4 
(v- 1 ) 2  (v - 1 ) 2  

+ 6, = -- 

- 2 ~ - 1  35v2-28v+5 5v2 - 4~ + 2 
Co = 6-- sin2 6 + 8 sin4 6, 

V - 1  (v- l ) 2  (v- 1 ) 2  

.. 
(A 4) 

9 ~ - 5  3 1 ~ ~ - 3 0 ~ + 7  9v2 - 8v + 3 
sin26-4 sin" 6, 

(v- 1 ) 2  (v- 1)2  
c-, = -x + 
1 5 ~ - 3  1 0 ~ ~ - 1 1 ~ + 3  3v2-3v+1 c-, = -- sin2 6 + 4 sin" 6, 

2(v-1) ( V - l ) Z  (v- 1 ) 2  

C2 = a( 1 - 22 + 4 2 )  -&2 - 5 ~ +  4 2 )  cos 26 + ;( 1 - z +x2) COB 46, (A 6 )  

6, = - (2 - 32+ 72') ++(8 - 162 + 112') cos 26-f(4- 22+ 32') cos 46, 

Co = i(6 -62+ 192') -;( 12 - 182 + 11%') cos 26 + (3 + 22') cos 46, 

6-, = - (2 -x+ 62') + i(8- 82+ 52') cos 26-#(4 + 22 + 32') cos 46, 

(A 7) 

(A 8) 

(A 9) 

- 

6+ = +( 1 + 3 2 2 )  -4(2 -2+ 2 2 )  cos 26 + t( 1 + 2 +x2)  cos 48, (A 10) 

(A 11) 

(A 12) 

(A 13) 

(A 14) 

(A 15) 

(A 16) 

(A 17) 

(A 18) 

(A 19) 

Cl,o = a( - l-icr),,+2-2( -~cr)~+~+3(1-icr),+,-22(2-icr),+,+~(3-icr),+,, 

C2,0 = - ( - 1 - icr),+2 + 3( - icr)n+2 - 3( 1 - icr)n+2 + (2 - icr)n+2, 

C3,0 = 2( - l-icr)n+2-7( -icr),,+z+~(l-icr),,+2-6(2-icr),+2+$(3-icr)n+2, 

C,, = - ( - 1 - icr)n+2 + 4( - icr),+2 - 6( 1 - icr),+2 + 4(2 - iu),+, - (3 - ia),+2, 

C2, = $( - 1 - icr),+2 - 8( - icr)n+2 + 9( 1 - icr)n+2 -4(2 - icr),+z + 3 3  - icr)n+2, 

C3,2 = -2(- l - i~7) , ,+~+9(-  icr)n+2 -?( 1 - icr),+2 + 3 2  -icr)n+2 -9(3 - icr),+2, 

Cl,4 = t( - l-icr),,+2-2( - i ~ ) ~ + ~ + 3 ( 1  -iu),+2-2(2-icr),+z++(3-icr),+2, 

C2, = -i( - 1 - icr),+2 + ( - icr)n+2 - (2 - iv),+Z + 4(3 - 
C3,4 = t ( -  1 -ia),+2-$( -icr)n+2+2(i-icr),+2-$(2-icr)n+2+~(3-icr)n+2. 
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